
Power-aware Event-driven Cache Partitioning for
high performance chip multiprocessor

Myeongjin Kim, Byunghoon Lee, Minsik Oh, and Eui-Young Chung
Department of Electrical and Electronic Engineering

Yonsei University
Seoul, Korea

kmjjang86@gmail.com, {bh2, stomlions}@dtl.yonsei.ac.kr, eychung@yonsei.ac.kr

Abstract—For the high performance of chip multiprocessors
(CMP), maximizing the utilization of shared resources has been one
of challenging works in recent years. Shared cache with cache
partitioning is one of great solution for CMP which allocates fitted
cache size to each core in CMP. This paper introduces event-driven
cache partitioning which dynamically reconfigures way-aligned
cache partitioning and also considers shared accesses between
multiple cores. Moreover, it reduces the static power by transferring
redundant ways into drowsy or power-down mode. We verify that our
proposed method sufficiently guarantees high hit rate and obtains
more power saving of 34.54% and 23.74% than baseline cache and
state-of-the-art method, although it needs less reconfiguration
overhead.

Keywords—cache partitioning; hit rate; power saving;
reconfiguration overhead

I. INTRODUCTION

Most of recent computing devices have employed chip
multiprocessor (CMP) for handling the multiple applications.
To successfully drive CMP architecture, it is significant to
manage shared cache well not to compete with each internal
core in CMP.

Cache partitioning, one of widely used scheme for shared
cache, arranges a suitable cache size with reference to
application’s characteristic and allocates to corresponding core.
The conventional cache partitioning adopts interval-based
method which makes a decision for cache reconfiguration
every fixed interval. However, it becomes a big burden because
of too redundant cache partitioning.

In this paper, we propose event-driven cache partitioning
that contributes to both system performance and power saving
with little hardware and decision overheads.

II. RELATED WORKS

Dynamic cache partitioning has been widely proposed to
improve the drawback of static cache partitioning. The author
in [1] introduced monitoring unit of cache utilization for cache
partitioning. Required hardware burden, however, should be
larger along with large cache size. The author in [2] proposed
power efficient cache partitioning using power-down mode to
unused cache ways. When the way enters into power-down

mode, its cell information is flushed and this may cause an
unexpected cache miss in future access.

Our proposed method remarkably minimizes cache
reconfiguration overhead using event-driven approach and
introduces two kinds of low power mode, drowsy and power-
down mode, to prevent unexpected performance degradation.
In addition, we take account of shared way to compensate
cache conflict problem that aforementioned methods [1-2] do
not contain.

III. PROPOSED METHOD

Dynamic cache partitioning requests cache reconfiguration
in processing time unlike static cache partitioning. To make an
accurate decision for cache reconfiguration, we propose event-
driven cache partitioning. There exist following three events
that trigger cache reconfiguration.

 Miss event (EventM) – When a variation of miss rate in
any partitioned cache area is higher than a predefined
threshold value.

 Conflict event (EventC) – When a cache thrashing level
is higher than a predefined threshold value.

 Time-out event (EventT) – When an access frequency of
certain way is lower than a predefined threshold value.

Based on three events, cache reconfiguration is done by
way transition between four kinds of following way pools.

 Private way pool (PoolP) – The set of ways only core i
can access. There are n private way pools if number of
cores in CMP is n.

 Shared way pool (PoolS) – The set of ways all of cores
in CMP can access.

 Drowsy way pool (PoolD) – The set of ways in drowsy
mode. The ways in PoolD preserve the current cell state.

 Power-down way pool (PoolPD) – The set of ways in
power-down mode. The ways in PoolPD destroy the
current cell state.

Fig. 1 shows the way transition triggered by three events.
First, PoolP acquires an additional way from ①PoolD ②PoolPD
③ other PoolP when EventM is triggered. To prevent

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

557

performance degradation, PoolP searches the idle way in
drowsy mode first which maintains the previous cell state. The
hit rate of way from drowsy mode is also higher than that of
power-down mode. If there is no idle way in PoolD and PoolPD,
PoolP takes the way from other PoolP which has sufficiently
high hit rate.

Second, PoolS acquires an additional way from ①PoolD ②
PoolPD ③other PoolP when EventC is triggered. The reason for
this acquisition ordering is same with PoolP.

Lastly, the redundant ways in PoolP and PoolS are
transferred to ①PoolD ②PoolPD when EventT is triggered. If
the way triggers EventT at first time, it moves into PoolD first to
prepare for consecutive EventM and EventC. If EventT is
triggered once again, it moves into PoolPD for aggressive
power saving.

∙ ∙ ∙

Drowsy way
pool

∙ ∙ ∙

Private way pool n

∙ ∙ ∙

Private way pool 0

∙ ∙ ∙

Power-down
pool

∙ ∙ ∙

Shared way
pool

Time-out EventConflict EventMiss Event

①

①

②

②

③ ③

①

②

③

③

Fig. 1. Way transition between way pools

IV. EXPERIMENTS

We evaluated our cache partitioning method on the stand-
alone cache simulator we designed. Cacti [3] is invoked in
early stage of our simulator to use the physical characteristic of
cache. The cache traces are extracted from full system
simulator, GEM5 [4], by running various combinations of
application in Parsec benchmark suite [5].

The traces are sorted into multi-programmed (MP) and
multi-threaded (MT) group. MP means multiple applications
are concurrently executed on multiple cores and MT means one
application is partially executed by multiple threads, i.e. one
thread per core in our scenarios. To verify with other methods,
we implemented baseline cache (BC), static cache partitioning
(SCP), UMON-based cache partitioning (UCP) [1],
Cooperative cache partitioning (CCP) [2].

Fig. 2 shows the hit rate of last-level cache (LLC). In MP
group, SCP is worse than BC since it cannot reflect the
variation of combined applications. By comparison, UCP, CCP
and proposed method provide higher hit rate due to its dynamic
approach. However, in MT group, only proposed method
shows better result than BC. This is owing to the consideration
of shared way pool.

The average power consumption of LLC is depicted in Fig.
3. Both of SCP and UCP do not support low power mode and

consume same power as much as BC does. CCP and proposed
method, however, turn off redundant ways to reduce static
power. Proposed method obtains the power saving of 34.54%
compare to BC. Furthermore, proposed method shows more
reduction of 23.74% than CCP, since the event-driven method
notifies an accurate timing of transition to low power mode.

Proposed method needs a hardware overhead of 88 bytes to
event monitoring, whereas 8,720 bytes in UCP. (4 cores in
CMP and 16 ways in LLC in our scenarios, and more details in
TABLE I) Its decision overhead is also reduced to 55%
compared to CCP by pruning redundant cache reconfigurations.

30

35

40

45

50

55

60

65

70

MP-1 MP-2 MP-3 MP-4 MP-5 MP-6 MP
AVG

MT-1 MT-2 MT-3 MT-4 MT-5 MT-6 MT
AVG

TOT
AVG

Hit Rate (%)

No CP

Static

UMON

Cooperative

Proposed

BC

SCP

UCP

CCP

Proposed

Fig. 2. Hit rate of last level cache

150

200

250

300

350

400

450

MP-1 MP-2 MP-3 MP-4 MP-5 MP-6 MP
AVG

MT-1 MT-2 MT-3 MT-4 MT-5 MT-6 MT
AVG

TOT
AVG

Avg. Cache Power (mW)

No CP

Static

UMON

Cooperative

Proposed

BC

SCP

UCP

CCP

Proposed

Fig. 3. Average power consumption of last level cache

TABLE I. HARDWARE OVERHEAD OF PROPOSED METHOD

Overhead Proposed method

Monitoring overhead

Access counter
(16 ways * 4 bytes)

64 bytes

Miss counter
(4 cores * 4 bytes)

16 bytes

Reconfiguration overhead
Access Permission Register

(4 cores * 16 ways)
8 bytes

Total overhead - 88 bytes

V. CONCLUSION

Event-driven cache partitioning we have proposed makes a
great contribution for high performance CMPs with little cache
reconfiguration overhead. Experimental results demonstrate
that cache hit rate of proposed method is well guaranteed,
especially when shared accesses are frequently occurred. It also
gives more power savings than other cache partitioning
methods. We think that cache partitioning will serve more
benefit if there are much more shared cache levels between L1
cache and LLC.

ACKNOWLEDGMENT

This work supported in part by Basic Science Research
Program through the National Research Foundation of Korea

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

558

(NRF) funded by the Ministry of Education
(2013R1A1A2011208) and by LG Electronics.

REFERENCES
[1] M. K. Qureshi, and Y. N. Patt, “Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared
caches,” in Proc. Int. Symp. on Microarchitecture, 2006.

[2] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and B.
Franke, “Cooperative partitioning: Energy-efficient cache partitioning

for high-performance CMPs,” in Proc. Int. Symp. on High Performance
Computer Architecture, 2012.

[3] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI
5.1,” HP Laboratories, April 2008.

[4] N. Binkert, et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, Vol. 39, No. 2, pp. 1-7, May 2011.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. Int. Conf.
on Parallel architectures and compilation techniques, 2008.

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

559

